

ECE 344

Microwave Fundamentals

Assistant Professor
Dr. Gehan Sami

A chart of Γ

$$
\Gamma=\Gamma \mathrm{r}+\mathrm{j} \Gamma \mathrm{i}
$$

$$
\begin{aligned}
& \text { Max reflection circle } \\
& |\Gamma|=1
\end{aligned}
$$

Impedance/Admittance smith chart

You will learn

- Locate impedance on smith chart read corresponding admittance and vise versa, move along TL read corresponding $\Gamma \mathrm{in}, \mathrm{Zin}, \mathrm{VSWR}$
- Quarter wave transformation
- Adding elements (series-shunt) to load impedance on Smith chart
- Find input impedance to an arbitrary circuit (may contain series, shunt, TL connections)

Impedance (Z) Chart

$$
\begin{aligned}
& Z(-\ell)=Z_{0}\left(\frac{1+\Gamma}{1-\Gamma}\right) \Gamma=\Gamma(-\ell) \\
& Z_{n}(-\ell) \equiv \frac{Z(-\ell)}{Z_{0}}=\left(\frac{1+\Gamma}{1-\Gamma}\right)
\end{aligned}
$$

Define

$$
Z_{n}=R_{n}+j X_{n} \quad ; \quad \Gamma=\Gamma_{R}+j \Gamma_{I}
$$

Substitute into above expression for $Z_{n}(-\ell)$:

$$
R_{n}+j X_{n}=\left(\frac{1+\left(\Gamma_{R}+j \Gamma_{I}\right)}{1-\left(\Gamma_{R}+j \Gamma_{I}\right)}\right)
$$

Next, multiply both sides by the RHS denominator term and equate real and imaginary parts. Then solve the resulting equations for Γ_{R} and Γ_{I} in terms of R_{n} and X_{n}. This gives two equations.

Impedance (Z) Chart (cont.)

1) Equation \#1:

$$
\left(\Gamma_{R}-\frac{R_{\mathrm{L}}}{1+R_{\mathrm{L}}}\right)^{2}+\Gamma_{I}^{2}=\left(\frac{1}{1+R_{\mathrm{L}}}\right)^{2}
$$

$$
\text { center }=\left(\frac{R_{\llcorner }}{1+R_{\mathrm{L}}}, 0\right)
$$

Transforming " r "

$$
\text { radius }=\frac{1}{1+R_{\mathrm{L}}}
$$

\mathbf{r}	Radius	Center
0	1	$(0,0)$
$1 / 2$	$2 / 3$	$(1 / 3,0)$
1	$1 / 2$	$(1 / 2,0)$
2	$1 / 3$	$(2 / 3,0)$
∞	0	$(1,0)$

Impedance (Z) Chart (cont.)

2) Equation \#2:

$$
\left(\Gamma_{R}-1\right)^{2}+\left(\Gamma_{I}-\frac{1}{X_{n}}\right)^{2}=\left(\frac{1}{X_{n}}\right)^{2}
$$

$$
\text { center }=\left(1, \frac{1}{X_{n}}\right)
$$

radius $=\frac{1}{\left|X_{n}\right|}$

Transforming " x "

\mathbf{x}	Radius	Center
0	∞	$(1, \infty)$
0.5	2	$(1,2)$
1	1	$(1,1)$
2	0.5	$(1,0.5)$
∞	0	$(1,0)$
0	∞	$(1,-\infty)$
-0.5	2	$(1,-2)$
-1	1	$(1,-1)$
-2	0.5	$(1,-0.5)$
$-\infty$	0	$(1,0)$

Impedance Smith Chart

Smith Chart - Imaginary Circles

Smith Chart - Real Circles

Impedance (Z) Chart (cont.)

Important Points:

- Short Circuit
$\Gamma=-1, z=0$
- Open Circuit
$\Gamma=1, z \rightarrow \infty$
- Matched Load
$\Gamma=0, z=1$
- The circle $|\Gamma|=1$ describes a lossless element (C or L)

Smith Chart Scales
$.125 \lambda$
0.375λ

Complex Г Plane

Standing Wave Ratio

Example 1

Locate Z

$$
\text { e.g. } Z_{L}=50+\mathrm{j} 25 \Omega
$$

ALWAYS NORMALIZE FIRST

$$
\overline{\mathrm{Z}}_{\mathrm{L}}=1+\mathrm{j} 0.5
$$

Phase of Γ

$$
\Gamma=0.24\left(76^{\circ}\right)
$$

Move along TL from load toward Generator

All 50Ω, constant ρ

$$
\begin{aligned}
& Z_{\text {in }}=50(1.65+j 0.1) \Omega \\
& \Gamma_{\text {in }}=0.24\left(4^{\circ}\right)
\end{aligned}
$$

